The Case Against Reality

Why Evolution Hid the Truth from Our Eyes

DONALD HOFFMAN

Figures from the book

Fig. 1: The Necker cube. When we view the cube in the middle, we sometimes see face A in front, but at other times we see face B in front. © DONALD HOFFMAN

62 The Case Against Reality

Fig. 4: A fitness function. In this example, small or large amounts of a resource are bad for fitness. Intermediate amounts are best for fitness. © DONALD HOFFMAN

Fig. 5: Seeing truth versus seeing fitness. The shades of gray seen by *Truth* report the amount of a resource but not the fitness payoffs. The shades of gray seen by *Fitness* report the fitness payoffs. © DONALD HOFFMAN

Fig. 6: The Necker cube. Which cube is there when you don't look? The cube with face A in front, or the cube with face B in front? © DONALD HOFFMAN

Fig. 7: A molecule with a special taste. © DONALD HOFFMAN

Fig. 8: Image of Twin Quasar QSO 0957+561 taken by the Hubble Space Telescope. Credit: ESA/NASA

Fig. 9: Six spheres packed inside a larger sphere. The six smaller spheres can hold more information than the larger sphere that surrounds them. © DONALD HOFFMAN

Fig. 10: The "perceive-decide-act" (PDA) loop. Natural selection shapes this loop so that experiences guide actions that enhance fitness. © DONALD HOFFMAN

Fig. 11: Correcting an erased line. The visual system creates a line between the two disks on the right to correct an erasure error. © DONALD HOFFMAN

Fig. 12: Correcting an erased square. The visual system creates a square over the four disks on the right to correct an erasure error. © DONALD HOFFMAN

Fig. 13: Correcting an erased cube. The visual system creates a cube on the right to correct an erasure error. © DONALD HOFFMAN

Fig. 14: Shaded disks. The random shading of the left disk and the uniform shading of the middle disk makes them look flat. The shading of the right disk makes it look like a sphere. © DONALD HOFFMAN

Fig. 15: Convex and concave disks. We assume that the light source is overhead. ${\rm \odot}$ DONALD HOFFMAN

Fig. 16: Inflating the third dimension. We sometimes interpret curving contours as a shape with depth in three dimensions. © DONALD HOFFMAN

Fig. 17: Enhancing the body with jeans. The left side looks flat. The right side looks firm and toned. The difference is due to careful use of visual cues for depth. © DONALD HOFFMAN

Fig. 18: Sensitivity curves for the three types of cones in the retina of the eye (L, M, and S). The sensitivity of rods, which mediate vision in low light, is given by the "R" curve. © DONALD HOFFMAN

Fig. 19: The Olympic rings illusion. The colors that fill each ring are illusory. The visual system creates them to correct an erasure error. © DONALD HOFFMAN

Fig. 20: The neon square illusion. The glowing blue square is illusory. The visual system creates it to correct an erasure error. © DONALD HOFFMAN

Fig. 21: Two frames of dots from a movie. When the frames are displayed as a movie, the visual system creates blue bars that move, glow, and have sharp edges. © DONALD HOFFMAN

The Case Against Reality | Figures

Fig. 22: Joseph's hat illusion. The brown rectangle on the left side of the hat is printed in the same color ink as the yellow rectangle on the front of the hat. © DONALD HOFFMAN

Fig. 23: Eight chromatures. Chromatures are more versatile than uniform color patches at triggering specific emotions. © DONALD HOFFMAN

Fig. 24: Four red chromatures. Red only triggers hunger if the texture is appropriate. © DONALD HOFFMAN

The Case Against Reality | Figures

Fig. 25: Change blindness. There are three differences between these two images. © DONALD HOFFMAN

Fig. 26: Visual acuity. If you stare at the middle dot, the big letters are as clear as the smaller. © DONALD HOFFMAN

Fig. 27: Pop out. We easily see the large 2 in the left box, the lighter 2 in the middle box, and the tilted 2 in the right box. © DONALD HOFFMAN

Fig. 28: Color pop out. The green 2 is easily seen even when surrounded by many black 2s. © DONALD HOFFMAN

Fig. 29: Difficult search. The 5 in each box does not pop out. One must search for it. © DONALD HOFFMAN

Fig. 30: Difficult search. The cross in the left box and the gray upright T in the right box do not pop out. © DONALD HOFFMAN

Fig. 31: A store window display. This display makes it difficult to find brand or product information. © DONALD HOFFMAN

•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•

Fig. 32: Grouping by brightness contrast. We see horizontal groups in the middle figure and vertical groups in the figure on the right. © DONALD HOFFMAN

and vertical groups on the right. © DONALD HOFFMAN

Fig. 34: Grouping by size. We see horizontal groups on the left and vertical groups on the right. © DONALD HOFFMAN

Fig 35: Grouping by color. We see horizontal groups on the left and vertical groups on the right. © DONALD HOFFMAN

-	-	-	-	۱	۱	۱	۱
-	-	•	-	۱	۱	۱	۱
-	-	-	-	۱	۱	۱	I
-	-	-	-	1	١	1	1

Fig. 36: Grouping by orientation. We see horizontal groups on the left and vertical groups on the right. © DONALD HOFFMAN

Fig. 37: Grouping by proximity. We see horizontal groups on the left and vertical groups on the right. © DONALD HOFFMAN

-	-	-	-				
				-	•	-	-
-	-	-	-	•	-	-	-
-	-	-	-	-	-	-	-
				-	-	-	-
-	-	-	-				

Fig. 38: Grouping by orientation and proximity. We see horizontal groups on the left and vertical groups on the right. © DONALD HOFFMAN

Fig. 39: Grouping and search. It is easier to find the tilted line on the right than on the left. ${\rm ©}$ DONALD HOFFMAN

Fig. 40: Endogenous attention and search. Attending to white makes the white X pop out. © DONALD HOFFMAN

Fig. 41: The "perceive-decide-act" (PDA) loop. © DONALD HOFFMAN

Fig. 42: Two interacting agents. © DONALD HOFFMAN